EE 330 HO 11 Solutions Spring 2024

Problem ! $\quad A_{v}=-g_{\text {m }} R_{L}=-3 \Rightarrow \frac{\mu}{\frac{r_{0}}{} \omega} V_{E B} R_{L}=3$
So $\frac{w}{L}=\frac{3}{\mu C_{0 \times R} R_{L} V_{E B}}$ but $V_{E B}=+1.25 \Rightarrow \frac{w}{L}=\frac{3}{10^{4} 10^{4}}$.
\therefore Let $L=1 / A, \omega=2.4 \mathrm{n}$

$$
\frac{w}{L}=2.4
$$

Problem 2 observe $V_{G T}=.8 \mathrm{~V}$, $I_{G T-M A K}=200 \mu \mathrm{~A}, V_{\text {Fou }} \simeq .90$
a) $\frac{12-0.8 \mathrm{~V}}{R_{66}}>200 \mu \mathrm{~A} \Rightarrow R<\frac{11.20}{200 \mu \mathrm{~A}}=56 \mathrm{~K} \Omega$
b) $I_{F}=\frac{50 \mathrm{~V}-0.9 \mathrm{~V}}{40 \Omega}=1.23 \mathrm{~A} \Rightarrow P=(1.23 \mathrm{~A})(.9 \mathrm{~V})=1.11 \mathrm{~W}$
c) $P_{\text {GATE }} \simeq(.80)(200 \mu \mathrm{~A})=160 \mu \mathrm{~m}$

Problem 3

will trigger when $V_{G}=V_{G T} \Rightarrow(.053) V_{A C}=2.5$

$$
\text { or } \quad V_{A C}=\frac{2.5}{.053}=47.5 \mathrm{~V}
$$

From figure in data sheet, since $\left|I_{L}\right|<\frac{80}{20 \Omega}=4 \mathrm{~A}$,

$$
v_{\Gamma} \simeq 0.9 \mathrm{~V}
$$

To find $t_{1}, \quad 80 \sin \left(2 \pi .60 t_{1}\right)=47.5 \mathrm{v}$

$$
\begin{aligned}
(2 \pi) \cdot 60 t_{1} & =\sin ^{-1}\left(\frac{47.5}{80}\right) \\
t_{1} & =1.67 \mathrm{msec}
\end{aligned}
$$

And $t_{2}=t_{1}+8.3 \mathrm{msec}=9.97 \mathrm{msec}$
b) $I_{L} \simeq \begin{cases}0 & 0 \leqslant t \leqslant t_{1} \\ \frac{V_{A C}}{20} & t_{1}<t<8.3 \mathrm{nsec}\end{cases}$
will average power over $1 / 2$ period which is 8.3 msec

$$
\begin{aligned}
P_{A V G} & =\frac{1}{8.3 \mathrm{msoc}} \int_{0}^{8.3 \mathrm{nsec}}\left(U_{F}\right)\left(I_{L}\right) d t=\frac{1}{8.3 \mathrm{nscc}}\left[\int_{0}^{1.67 \mathrm{msec}}\left(V_{A C} \cdot 0\right) d t+\int_{1.67 \mathrm{mscc}}^{8.3 \mathrm{mscc}} V_{T} V_{A c}^{20} d t\right. \\
& =\frac{1}{8.3 \mathrm{msec}} \int_{1.67 \mathrm{msoc}}^{8.3 \mathrm{msoc}}(0.90) 4 \sin (2 \pi .60 t) d t \\
& =\frac{3.6}{8.3 \mathrm{msec}} \int_{1.67 \mathrm{mcoc}}^{8.3 \mathrm{msoc}} \sin (2 \pi .60 t) d t=2.1 \omega
\end{aligned}
$$

C) Quadrants $1 \not \& 3$

Problem $4 \quad V_{G T}=2 V$ want $\left.\frac{R_{1}}{R_{1}+10 \mathrm{~K}}(170 \sin \omega t)\right|_{t=\frac{T_{s}}{8}}=2 \mathrm{U}$ where $\omega=(2 \pi) 60$ and $T_{S}=\frac{1}{60}$
Thus $\frac{R_{1}}{R_{1}+10 \mathrm{~K}} 170 \sin \left(2 \pi(60) \frac{1}{(8)(60)}\right)=2 \mathrm{~V}$

$$
\left(\frac{R_{1}}{R_{1}+10 k}\right)(170) \sin (\pi / 4)=2 \mathrm{~V}
$$

solving obtain $R_{1}=169 \Omega$
Problem 5

Assent Tret is in saturation
$V_{a s}=0$

$$
\begin{aligned}
& I_{D}=I_{D S S} \cdot\left(1-\frac{V_{\mathrm{A}}}{V_{\mathrm{P}}}\right)^{2} \\
& I_{0}=100 \mathrm{MA} \\
& V_{\text {out }}=I_{0} \cdot R=100 \mathrm{MA} \cdot 6 \mathrm{kR}=0.6 \mathrm{~V}
\end{aligned}
$$

$$
\text { Problem } 6
$$

$$
\begin{aligned}
& g_{m}=\frac{\partial I_{D}}{\partial V_{A S}}=-2 \cdot \frac{I_{D s s ?}}{-V_{p}}\left(1-\frac{V_{\text {Gs }}}{V_{P}}\right)\left(1-\lambda V_{D S}\right) \\
& g_{n}=\left.2 \cdot \frac{I_{D S S P Q}}{V_{P}}\left(\frac{W}{L}\right)\left(1-\frac{V_{\text {as }}}{V_{P}}\right)\right|_{Q}=\frac{2 I_{D Q}}{V_{p}\left(1-\frac{V_{G S Q}}{V_{P}}\right)} \\
& g_{0}=\frac{2 I_{D}}{2 V_{D S}}=\lambda \cdot I_{D S S P O}\left(\frac{W}{L}\right)\left(1-\frac{V_{\text {as }}}{V_{P}}\right)^{2}
\end{aligned}
$$

7)

Predum 7

$$
\text { Observe } U_{65 Q}=0 \mathrm{~V}
$$

$$
\text { IDE: } \frac{30 \times \cdot 10}{15} \cdot\left(1-\frac{0}{1}\right)^{2}=20 \mathrm{NA}
$$

$$
I_{\text {QQ }}=\frac{V_{\text {out Q }}-(-5)}{50 \mathrm{k} n}=20 \mathrm{~mA} \Rightarrow V_{\text {out }}=-4 \mathrm{~V}
$$

$$
\begin{aligned}
& A_{v}=\frac{V_{\text {ort }}}{v_{\text {in }}}=-g_{m} \cdot \text { sown }=-2 \frac{v}{v} \\
& +g_{m}=\frac{2}{v_{p}} I_{R Q}
\end{aligned}
$$

8)

a) This amplifier is unilateral. This can be determined by the lack of a y_{12} parameter, which means that $A_{V R}=0$. Having an $A_{V R}$ (or A_{v} with relabeled ports) of 0 is a property of unilateral amplifiers.
b) This model can be developed using diagrams given in lecture slides

Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- $\mathrm{R}_{\mathrm{IN}}, \mathrm{A}_{\mathrm{V}}$, and $\mathrm{R}_{\text {OUT }}$ often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$
R_{\text {IN }}=\frac{1}{y_{11}} \quad A_{V}=-\frac{y_{21}}{y_{22}} \quad R_{\text {out }}=\frac{1}{y_{22}}
$$

From this description, $\mathrm{R}_{\text {IN }}=\frac{1}{10^{-4} A / V}=10 k \Omega, \mathrm{~A}_{V}=-\frac{-10 A / V}{0.1 A / V}=100, \mathrm{~A}_{\mathrm{VR}}=\frac{0}{10^{-4} A / V}=0$, and $\mathrm{R}_{\text {OUT }}=$ $\frac{1}{0.1 \mathrm{~A} / V}=10 \Omega$.
c) While we found A_{v} in the previous step, this is not the actual gain of the given circuit. We'll perform some simple analysis to find the actual gain.

$$
\begin{gathered}
V_{1}=V_{\text {in }}\left(\frac{R_{\text {in }}}{R_{\text {source }}+R_{\text {in }}}\right)=V_{\text {in }}\left(\frac{10000}{10050}\right)=.9950 V_{\text {in }} \\
V_{\text {out }}=A_{V} V_{1}\left(\frac{R_{l}}{R_{\text {out }}+R_{l}}\right)=(100)(.9950) V_{\text {in }}\left(\frac{1000}{1010}\right)=98.5173 V_{\text {in }}
\end{gathered}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=98.5173
$$

d) We'lll break these amplifiers up into stages and relate $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUt }}$ based on the intermediary node to find gain. $R_{\text {in }}$ and $R_{\text {out }}$ won't change for this amplifier

$$
\begin{gathered}
V_{1}=V_{\text {in }} \\
V_{\text {mid }}=A_{v} V_{1}\left(\frac{R_{\text {in }}}{R_{\text {out }}+R_{\text {in }}}\right)=(100)\left(V_{\text {in }}\right)\left(\frac{10000}{10010}\right)=99.9001 V_{\text {in }} \\
V_{\text {out }}=A_{v} V_{\text {mid }}\left(\frac{R_{l}}{R_{\text {out }}+R_{l}}\right)=(100)\left(99.9001 V_{\text {in }}\right)=9990.0099 V_{\text {in }} \\
\frac{V_{\text {out }}}{V_{\text {in }}}=9990.0099=A_{v}
\end{gathered}
$$

This leaves us with amplifier parameters $R_{\text {in }}=10 k \Omega, A_{v}=9990.0099, A_{v r}=0$, and $R_{\text {out }}=$ 10Ω

9\&10) Four-Bit Adder Module Code

Four-Bit Adder Testbench Code

Four Bit Adder Waveforms

Proves function by

- Adds $A+B+C_{i N}$
- Output is sum and Cout
- Output is zero when en is high

